

Institute for Statistical Studies and Economics of Knowledge

2023 BRICS Science, Technology and Innovation Policy and Foresight Exercises Symposium

STI policy development in Russia

Mikhail Gershman

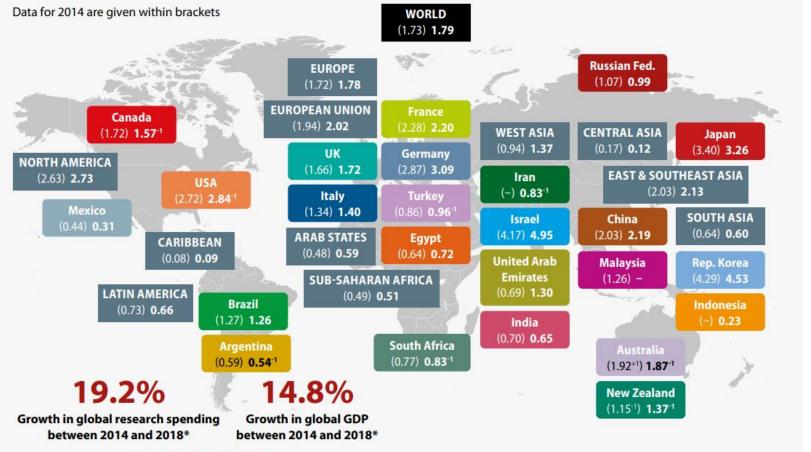
Pretoria, 2023

Innovation has become a key driver of socio-economic development worldwide

Many large developing countries has shown rapid changes in their innovation development in the last 10 years

Changes in countries' Global Innovation Index positions

	2013		2018		2023
🕘 China	35	\rightarrow	17	\rightarrow	12
💽 Turkey	68	\rightarrow	50	\rightarrow	39
💿 India	66	\rightarrow	57	\rightarrow	40
😡 Vietnam	76	\rightarrow	45	\rightarrow	46
💿 Brazil	64	\rightarrow	64	\rightarrow	49
>> Philippines	90	\rightarrow	73	\rightarrow	56
lndonesia	85	\rightarrow	85	\rightarrow	61
💿 Iran	113	\rightarrow	65	\rightarrow	62
C Pakistan	137	\rightarrow	109	\rightarrow	88



Global research spending has risen

In 2014-2018, **global research spending rose by 19.2%**, outpacing the growth of the global economy (+14.8%). This translated into a rise in research intensity from 1.73% to 1.79% of GDP.

Almost half (44%) of this rise was driven by China alone

Investment in R&D as a share of GDP, by region and selected country, 2014 and 2018 (%)

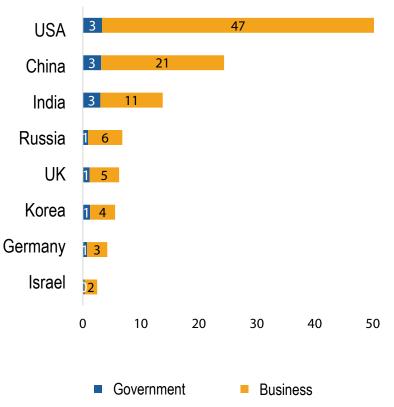
*in constant 2017 PPP\$ trillions

Large R&D programmes have been established, and investments in new technologies are increasing

Large R&D programmes:

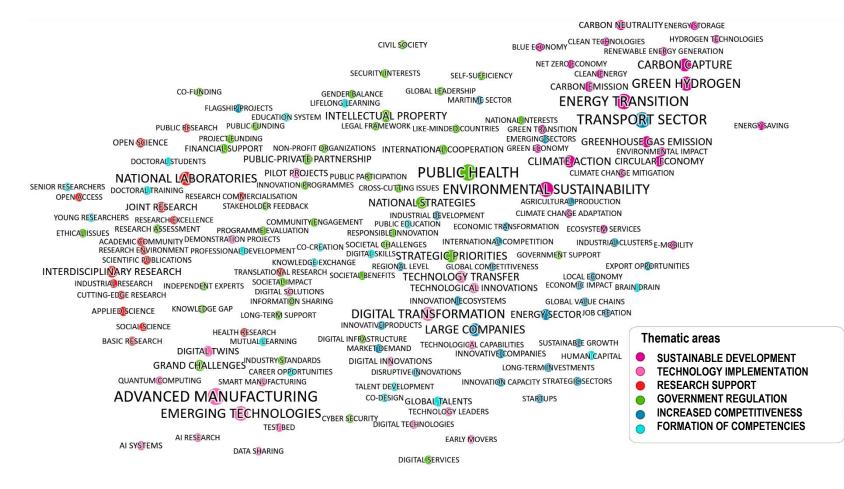
USA: «CHIPS and Science Act» (2022- 2032) – 280 billion US dollars

EU: «Horizon Europe» (2021-2027) – 95.5 billion euros

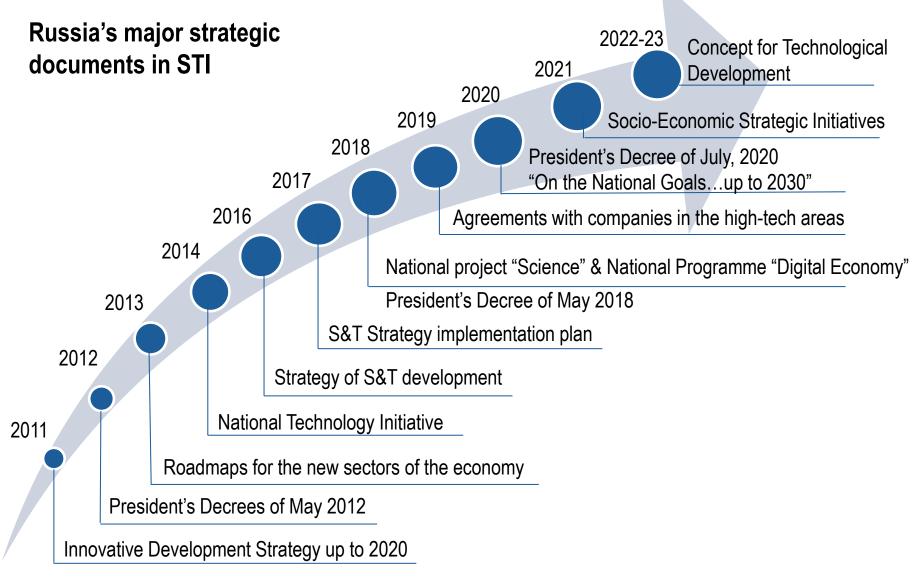

Korea: «Three Technology Super Gap R&D Strategy» (2023 - 2027) – 160 trillion won

France: «Healthcare Innovation 2030» – 20 bioproducts for cancer recovery up to 2030 – 7.5 billion euros

R&D investments of the largest companies: 2022, billion US dollars:


Alphabet – 39.5	Cisco – 6.7
Apple – 26.2	Tencent – 9.1
Microsoft – 24.5	Alibaba – 8.7
Huawei – 23.9	IBM – 6.5
Samsung – 19.9	TSMC – 5.4
Intel – 17.5	AMD – 5.0

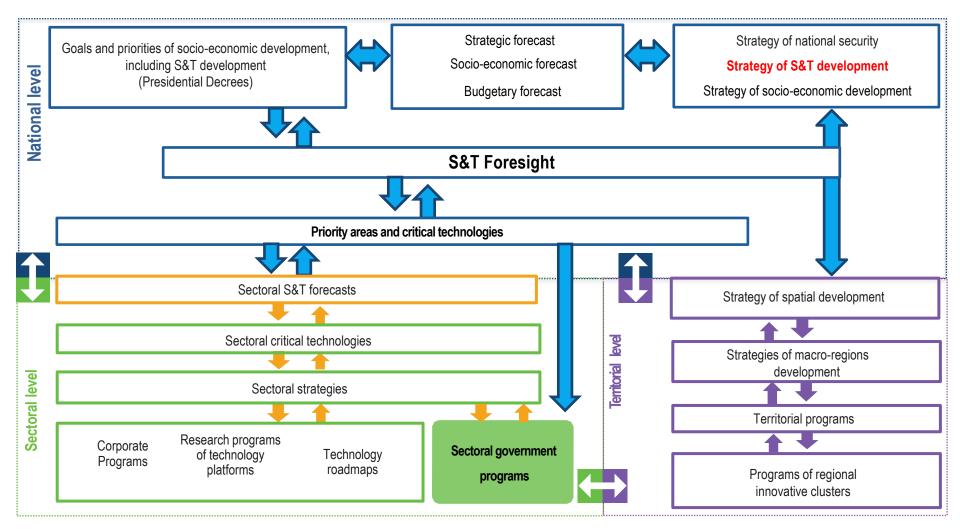
Actual and planned investments in the development of AI technologies: 2021-2024, billion US dollars PPP


The policies of leading countries are focused on sustainable development and increasing competitiveness through advanced technologies, as well as on achieving tech sovereignty

Note: The font and circle sizes show the dynamism of the term – the average growth rate of its significance over the analyzed period. Significance is calculated as the number of times a term is used in a document corpus, normalized by the size of the document corpus and multiplied by the vector centrality indicator (the average value of the term's thematic proximity with all other terms included in the analysis).

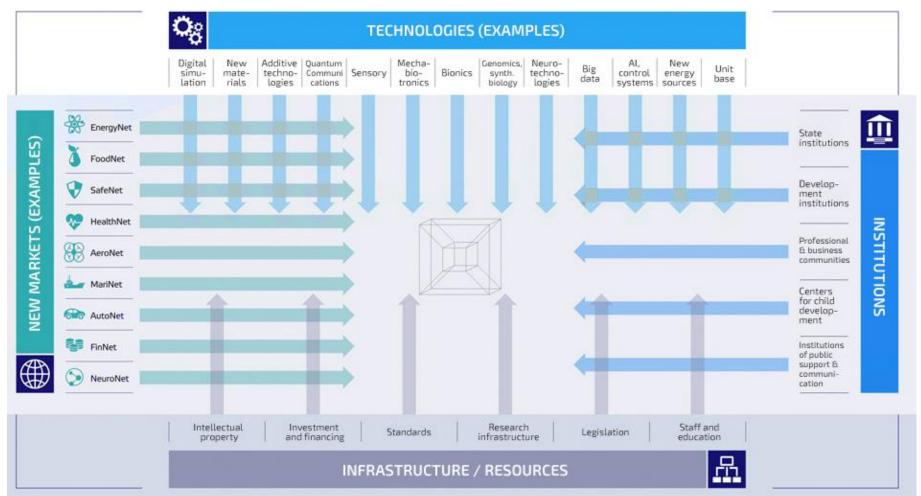
Russia has also been developing an innovation economy

Priority Areas and Critical Technologies (2011) Is to be updated in 2024


Priority areas		Critical technologies	
Nanoindustry		Computer modelling of nanomaterials, nanodevices, nanotechnologies	
		Nano-, bio-, information, cognitive technologies	
	A.	Nanomaterials and nanodevices diagnostics	
	05 80	Nanodevices and microsystems	
		Technologies for manufacturing and processing construction nanomaterials	
		Technologies for manufacturing and processing functional nanomaterials	
		Technologies providing broadband access to multimedia services	
Information and telecommunication		Information, management and navigation systems	
		Technologies and software for distributed and high-performance computer systems	
		Technologies for creating component base and energy-efficient lighting devices	
		Bio-catalytic, bio-synthetic and bio-sensor technologies	
		Biomedical and veterinary technologies	
Life sciences		Genome, proteome and post-genome technologies	
Life sciences	Q	Cellular technologies	
		Bioengineering technologies	
		Technologies to reduce damage from socially significant illnesses	
		Technologies for monitoring and forecasting the state of environment, prevention and liquidation of	
Rational use of nature	the state of the	environmental pollution	
		Technologies for exploring, developing and mining natural resources' sites	
		Technologies for the prevention and managing the consequences of natural and technological emergencies	
Transport 🛛 🗱 🔩 and aerospace		High-speed transportation vehicles and intelligent systems for operating and managing new types of vehicles	
		New-generation rocket and space systems and transportation vehicles	
Energy efficiency and energy saving		Basic power electrical engineering technologies	
	A Later	Nuclear power engineering, nuclear fuel cycle, safe handling of nuclear waste and depleted nuclear fuel	
		New and sustainable energy sources including hydrogen power engineering	
		Energy saving systems for energy transfer, distribution and use	
		Energy-efficient power generation and transformation technologies based on organic fuel	

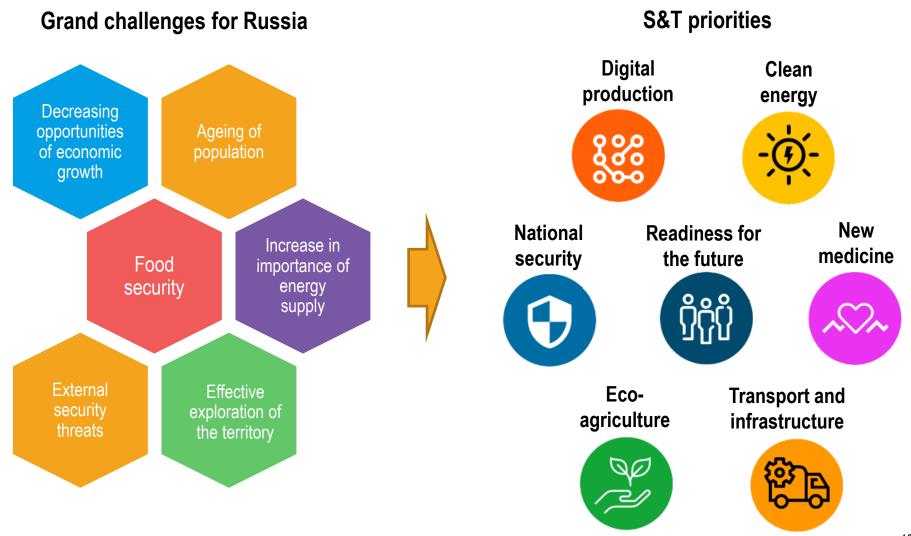
^{*} Presidential Decree of 7 July 2011 N 899 'On the approval of priority areas of science and technology development of the Russian Federation and the list of critical technologies of the Russian Federation'

S&T Foresight 2030 (adopted in 2014)


Russian S&T Foresight is a major strategic planning document aimed at identifying the most promising areas of S&T development in Russia towards 2030

National Technology Initiative (2014)

- Since 2014 The program for creation of fundamentally new markets and conditions for global technological leadership of Russia by 2035
- Budget for 2020 around 10,6 billion rubles from the federal budget



Sources: Agency for Strategic Initiatives, https://asi.ru/eng/nti/; Federal Treasury data

Strategy for S&T development (2016): challenges and priorities

(adopted by the President of Russia 1 December, 2016)

Concept for Technological Development (2023) as an answer to foreign sanctions

Central strategic document at the moment aimed at achieving technology sovereignty

National control over the development of critical and emerging technologies

Innovation oriented economic growth and strengthening technologies role in the development of the economy and society

Technology based sustainable functioning and development of production systems

- Setting technology priorities
- Implementing industrial mega-projects (microelectronics, machine tool industry/robotics, drone industry)
- Developing products based on new technologies (AI, quantum, etc.)
- Supporting technology companies
- Developing STI cooperation with friendly countries

BRICS countries innovation systems strength and weaknesses

Country	Strengths	Weaknesses
Brazil	 High-tech imports Expenditure on education Domestic market scale Trademarks by origin 	 Graduates in science and engineering Labor productivity growth Policies for doing business Loans from microfinance institutions
China	 GERD financed by business Patents and utility models by origin Global corporate R&D investors QS university ranking Labor productivity growth 	 Regulatory quality Tertiary inbound mobility Cost of redundancy dismissal Environmental performance GERD financed by abroad
India	 Intangible asset intensity VC received Domestic industry diversification Domestic market scale 	 Knowledge-intensive employment Pupil-teacher ratio, secondary Environmental performance ICT access
Russia	 Domestic market scale Graduates in science and engineering QS university ranking Knowledge-intensive employment 	 Operational stability for businesses Rule of law Venture capital Environmental performance
South Africa	 Market capitalization Domestic credit to private sector Software spending Global brand values 	 Graduates in science and engineering Pupil-teacher ratio, secondary Policies for doing business Energy use

Concluding remarks

- Innovation-based growth has become an imperative worldwide
- More and more countries increase their investments in R&D and new technologies
- Russia is consequently developing policies aimed at stimulating innovative development and reaching technology sovereignty
- BRICS nations should further develop their cooperation in order to strengthen each other's economies

Thank you!

mgershman@hse.ru